Identification and characterisation of resistance to the cereal cyst nematode Heterodera filipjevi in winter wheat

Shree R. PARIYAR ${ }^{1}$, Abdelfattah A. DABABAT ${ }^{2}$, Shahid Siddique ${ }^{1}$, Gul Erginbas-OraKci ${ }^{2}$, Abdelnaser Elashry ${ }^{1,3}$, Alexei Morgounov ${ }^{2}$ and Florian M.W. Grundler ${ }^{1, *}$
${ }^{1}$ Institute of Crop Science and Resource Conservation (INRES), Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115 Bonn, Germany
${ }^{2}$ International Maize and Wheat Improvement Centre (CIMMYT), 3906511 Emek, Ankara, Turkey
${ }^{3}$ Agricultural Research Center (ARC), Agricultural Genetic Engineering Research Institute (AGER), 9 Gamaa Street, Giza 12619, Egypt

Received: 22 October 2015; revised: 18 December 2015 Accepted for publication: 18 December 2015; available online: 29 January 2016

Abstract

Summary - The aim of this study was to search for new sources of resistance against the cereal cyst nematode, Heterodera filipjevi, in a collection of 290 wheat accessions. The plants were inoculated with juveniles and assessed for the number of females and cysts. One percent of the wheat accessions were ranked as resistant, 16% as moderately resistant, 41% as moderately susceptible, 26% as susceptible and 15% as highly susceptible. The infection rate and the number of females and cysts per plant were significantly lower in the resistant accession Nudakota and three moderately resistant accessions Ekonomka, Katea and Lantian 12 compared with susceptible cv. Bezostaya 1. Nematode development was reduced in resistant and moderately resistant accessions. The size of females and the total number of eggs and second-stage juveniles were reduced only in Ekonomka. No significant difference in plant height, plant weight, root length, root weight and root volume were recorded for inoculated plants compared to non-inoculated plants. This study has identified four resistant wheat accessions offering new material for breeding the resistance to H. filipjevi.

Keywords - breeding, host-nematode interaction, infection, susceptibility, Triticum aestivum.

Plant-parasitic nematodes significantly limit food production worldwide with at least 17 important nematode species in three major genera (Meloidogyne, Heterodera and Pratylenchus). Cereal cyst nematodes (CCN) are an important group of plant-parasitic nematodes attacking cereals. CCN comprise a number of closely related species that cause severe yield loss in cereals in many parts of the world including North Africa, West Asia, China, India, Australia, USA and Europe (Nicol \& Rivoal, 2008). Heterodera avenae, H. filipjevi and H. latipons are frequently reported species in wheat and each species consists of various pathotypes (Rivoal \& Cook, 1993; Holgado et al., 2005; Toktay et al., 2013). Heterodera filipjevi has been described in China, Estonia, India, Iran, Libya, Morocco, Norway, Pakistan, Russia, Sweden, Tadzhikistan, Tunisia, Turkey and USA (Rumpenhorst et al., 1996; Holgado et al., 2004; Smiley et al., 2008; Riley et al., 2009; Nicol et al., 2011). In Turkey, H. filipjevi has been found in 87% of the wheat-growing area in
the Central Anatolian Plateau with an estimate of yield loss up to 50% in several rain-fed winter wheat locations (Nicol et al., 2006). Infected mature plants are stunted, have a reduced number of tillers and the roots are bushy and knotted (Nicol et al., 2011). Growth of the plants was retarded and their lower leaves are often chlorotic thus forming pale green patches in the field.

The life cycle of H. filipjevi has not been studied in detail but it is suggested to be similar to other CCN species such as H. avenae and H. latipons (Hajihasani et al., 2010). Morphologically, H. filipjevi can be distinguished by the presence of bifenestrate vulval cones, a distinct underbridge and a robust stylet with anterior concave knobs, and a hyaline terminal tail in second-stage juveniles (J2) (Abdollahi, 2008; Smiley et al., 2008). Heterodera filip$j e v i$ is a sedentary nematode and completes only one generation during each crop season (Hajihasani et al., 2010; Seifi et al., 2013). The mechanisms by which cyst nematodes invade roots have been investigated in several

[^0]plant species (Sobczak \& Golinowski, 2011). In general, the vermiform J2 of cyst nematodes invade epidermal and cortical cells behind the tips of young roots, migrate intracellularly towards the vascular cylinder and select a single cell (initial syncytial cell) in the stele into which they inject effector molecules, thereby inducing the formation of enlarged syncytial feeding structures in roots (Wyss \& Grundler, 1992; Hewezi \& Baum, 2013). After feeding has commenced, the juveniles become sessile and moult consecutively into the third-stage juvenile (J3), fourthstage juvenile (J4) and eventually into the adult female or male. Heterodera filipjevi is sexually dimorphic and sex becomes morphologically apparent during the J3 stage. Adult males regain mobility to find females for mating, whereas females remain embedded in the root tissue and continue to feed from the syncytium. After mating, the females produce several hundred eggs and then die. Their cuticles harden during a tanning process, and the body turns into a resistant brown cyst that protects the eggs in the soil for many years.

Plant resistance is currently the most effective method to control cyst nematodes in cereals (McIntosh, 1997). Nematode resistance against cyst nematodes in plants is characterised by failure or limitation to produce functional feeding sites and female development (Williamson \& Kumar, 2006). It has been described for a number of cyst nematodes that juveniles develop into females under favourable conditions in a susceptible host, whereas the number of males increases in resistant hosts (Trudgill, 1967). Accordingly, reduced numbers of females or cysts are the most common traits in nematode resistance. Reduced attraction towards roots and root structural barriers may also be important factors preventing invasion and syncytium induction. Analysis of nematode invasion, nematode development and nematode reproduction provides a detailed understanding of the active resistance mechanisms. Within CCN, most studies have been focused on H. avenae. More than nine single dominant genes, known as 'Cre' have been reported in wild relatives of wheat and barley (Riley et al., 2009; Dababat et al., 2015). New sources of resistance to H. filipjevi were found in wheat, Thinopyrum (wheat grass), derivatives (Li et al., 2012) and the wheat landrace, Sardari, which is also a source of Crel (Akar et al., 2009). Although the exploitation of plant resistance to CCN has great potential, only limited efforts have been made to identify new and effective sources of resistance in wheat. In fact, currently, there are no varieties providing strong and sustainable resistance to H. filipjevi in wheat, barley and oat.

Here, we present results of screening a large collection of wheat populations against H. filipjevi, which we assume could lead to the identification of new sources of resistance. In addition, detailed studies on the different stages of interaction between host and nematode during invasion, nematode development and reproduction can help us to understand the underlying mechanism of resistance.

Materials and methods

Wheat accessions

Two hundred and ninety-one winter wheat accessions including breeding lines, cultivars and landraces were tested (Table S1). The wheat accessions originated from Afghanistan (1), Azerbaijan (1), Bulgaria (2), Canada (2), China (7), Hungary (1), Iran (20), the International Winter Wheat Improvement Program Turkey-CIMMYTICARDA (95), Moldova (3), Mexico (29), Romania (1), Russia (28), Serbia (1), South Africa (26), Syria (1), Turkey (24), Ukraine (12) and the USA (36). The material was provided by the International Winter Wheat Improvement Program (http://www.iwwip.org/Nursery).

NEMATODE INOCULUM

A pure growth room culture of H. filipjevi from Central Anatolian Plateau, Eskisehir ($39.76665^{\circ} \mathrm{N}, 30.40552^{\circ} \mathrm{E}$), was collected and cysts were extracted by Cobb's decanting and sieving method (Cobb, 1918). Cysts were picked by hand and sterilised with $0.5 \% \mathrm{NaOCl}$ for 10 min and rinsed several times with sterile distilled water. The surface-sterilised cysts were transferred into a funnel and stored at $4^{\circ} \mathrm{C}$ for hatching. Freshly hatched juveniles after 2 days ($\leqslant 48 \mathrm{~h}$) were used as inoculum. We performed a polymerase chain reaction-restriction fragment length polymorphism analysis to confirm the species identification shown in Figure S1 (Yan et al., 2010).

SCREENING ASSAY OF WHEAT ACCESSIONS

Six spikes of each of the 290 wheat accessions were picked by hand and one representative spike was selected from each accessions. A susceptible wheat cv. Bezostaya 1 was used as control. Seven seeds from each spike were germinated in moistened tissue in Petri dishes for 3 days at $22^{\circ} \mathrm{C}$. After germination, five seedlings of a similar phenotype were selected. A sterilised potting mixture of sand, field soil and organic matter (70:29:1, $\mathrm{v} / \mathrm{v} / \mathrm{v})$ was filled in RLC4-pine tubes ($25 \times 160 \mathrm{~mm}$, Ray

Leach Cone-tainer ${ }^{\text {TM }}$; Stuewe \& Sons). One germinated seed was planted per tube in a 200 tube rack (RL200; Ray Leach Cone-tainer ${ }^{\mathrm{TM}}$) and plants were organised in a randomised block design. Each plant was inoculated with 250 freshly hatched J 2 of H. filipjevi in 1 ml water into three holes around the shoot base 7 days after transplanting. Plants were grown in a growth room at $26^{\circ} \mathrm{C}$ and $65 \% \mathrm{RH}$. Twenty-five days after planting, plants were fertilised with water-soluble Nitrophoska ${ }^{\circledR}$ Solub/Hakaphos ${ }^{\circledR}$ (20:19:19 NPK including micro elements such as $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{B}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Mo}$ and Zn ; COMPO) at $1 \mathrm{~g} \mathrm{l}^{-1}$. Plants were harvested at 63 days post infection (dpi) to collect the cyst from the soil and the roots. The soil from each tube was collected in a 21 beaker filled with water and the soil mixture was stirred, then left for about 30 s to allow the heavy sand and soil debris to settle down. Roots were washed very gently on the upper sieve to free any females and cysts left attached to the root system. The soil mixture was poured through 850 and $250 \mu \mathrm{~m}$ sieves. This process was repeated three times to ensure all females and cysts were collected. Females and cysts from both roots and soil were captured on a $250 \mu \mathrm{~m}$ sieve and counted under a dissecting microscope. The roots were further checked for females and cysts that had not been dislodged during the washing process. The host status of the tested wheat accessions was determined and categorised into five groups based on mean number of females and cysts present per plant (Dababat et al., 2014). The following ranking was used on a per plant basis: resistant $(\mathrm{R})=<5$ females and cysts; moderately resistant $(\mathrm{MR})=5-10$ females and cysts; moderately susceptible $(\mathrm{MS})=11-15$ females and cysts; susceptible $(S)=16-$ 19 females and cysts; and highly susceptible $(\mathrm{HS})=>20$ females and cysts. The widely grown winter wheat cv. Bezostaya 1 in Turkey was used as the susceptible control.

RESISTANCE ASSAY

To identify potential mechanisms of resistance, nematode invasion, development and reproduction was monitored in the resistant accession Nudakota and three moderately resistant accessions Ekonomka, Katea and Lantian 12, and compared to the susceptible cv. Bezostaya 1. The experimental method described above for the screening assay of wheat accessions was used for the resistance assay. For plant growth measurements, non-inoculated (NI) and inoculated (I) plants were analysed. All treatments were repeated 18 times and performed in a completely randomised design. To monitor nematode infection and nematode development, roots were stained with
acid fuchsin at 2, 5, 10 and 15 dpi (Byrd et al., 1983). To determine nematode reproduction, plants were harvested at 63 dpi, female and cysts were extracted from roots and soil, and the numbers of eggs and J2 determined after gently crushing the cysts. To measure cyst size, cysts were transferred to 2% water agar and photographed with a DM2000 dissection microscope (Leica Microsystems). The largest optical section of the cysts area was calculated using LAS software (Leica Microsystems). To assess growth parameters, the plants were washed gently, remaining soil particles were removed, and the root surface was dried with soft paper towel. Immediately after drying, the fresh plant weight and root weight was recorded. Plant height was assessed as the distance from the base of the stem to the base of the spike. Root length was determined by using WinRHIZO ${ }^{\text {TM }}$ software (Regent Instruments Canada); root volume was measured volumetrically (Harrington et al., 1994).

DATA ANALYSIS

In the first round of wheat accession screening, mean, standard deviation and standard error of number of cysts were determined. In the following resistance assay, the data were analysed using Sigma Plot 11.0. Statistical analysis included one-way analysis of variance and post-hoc analysis by the Holm-Sidak method. Statistical differences were accepted as significant at $P \leqslant 0.05$. Regression analysis was used to relate the size of cyst to the total number of eggs and J2 developed on the different wheat accessions. A polynomial regression analysis was used to calculate the best fitting equation.

Results

SCREENING ASSAY OF WHEAT ACCESSIONS

The screening of 290 winter wheat accessions resulted in identifying 1% as resistant, 16% as moderately resistant, 41% as moderately susceptible, 26% as susceptible and 15% as highly susceptible to H. filipjevi (Table S1).

Resistance Assay

Nematode invasion

The time-course of juvenile infection in selected wheat accessions Nudakota Katea, Ekonomka, Lantian 12 and cv. Bezostaya 1 at 2,5 and 10 dpi is shown in Figure 1. No significant difference in nematode penetration among

Fig. 1. Nematode infection in different selected wheat accessions at 2,5 and 10 days post inoculation (dpi). Columns with different letters are significantly different based on one way analysis of variance (Holm-Sidak) analysis at ($P \leqslant 0.05, \mathrm{n}=18$) and $\mathrm{a}>\mathrm{b}$. Bar indicates the standard error of the mean.
the tested wheat accessions was found at 2 dpi . The number of J 2 in the root was generally low, around 5-10. However at 5 dpi, nematode penetration was significantly greater, about 32 J 2 in cv . Bezostaya 1 and up to about, 19 J2 in Ekonomka, Katea, Lantian 12 and Nudakota. The highest nematode infection was observed at 10 dpi in all accessions, with a significantly lower number in resistant and moderately resistant accessions compared to the susceptible cv. Bezostaya 1.

Nematode development

In Ekonomka, Katea, Lantian 12 and Nudakota, the number of J3 and J4 juveniles was found to be much lower at 10 dpi than in cv. Bezostaya 1 (Fig. 2A), reflecting the lower number of invading J2. At 15 dpi, the number of J3 in Katea, Ekonomka, Nudakota and Lantian 12 were significantly lower than in cv. Bezostaya 1 (Fig. 2B). At the same time point, the number of J 4 females resulted from the development of J3. It was high in cv. Bezostaya 1, but significantly lower in all four resistant accessions. In addition, the number of males in Katea and Nudakota was significantly higher than in cv. Bezostaya 1.

Nematode reproduction

In addition to reduced and delayed nematode invasion and development in Ekonomka, Katea, Lantian 12 and Nudakota, the numbers of mature cysts were also significantly lower when counted at 63 dpi (Table 1). In this experiment, Lantian 12 was regarded as MS, due to slightly higher number of females per plant (Table 1).

Fig. 2. Nematode development in selected wheat accessions at: A: 10 days post inoculation; B: 15 days post inoculation. Columns with different letters are significantly different based on one way ANOVA (Holm-Sidak) analysis at ($P \leqslant 0.05$, $\mathrm{n}=18)$ and $\mathrm{a}>\mathrm{b}$. Bar indicates the standard error of the mean.

However, the mean number of cysts per plant was significantly less than in cv. Bezostaya 1. Cyst sizes in Katea and Ekonomka were significantly smaller, whilst there were no significant difference in Lantian 12 and Nudakota compared with cv. Bezostaya 1. Ekonomka and Nudakota contained significantly fewer eggs and juveniles per cyst compared with cv. Bezostaya 1. The regression analysis revealed no correlation between total number of eggs and juveniles to the cyst size in all wheat accessions (Fig. 3).

Plant growth

For analyses of basic plant growth parameters, we monitored plant height, plant fresh weight, root length, and root fresh weight at 63 dpi of inoculated and non-

Table 1. Selected winter wheat accessions and their response to Heterodera filipjevi development and reproduction.

Wheat genotype	Pedigree	Origin	Cysts per plant	SD	SE	Cyst size $\left(\mathrm{mm}^{2}\right)$	Eggs per cyst	J2 per cyst	Total (eggs+J2)	Host status
Bezostaya 1	LUT17/SRS2	Russia	25.47^{a}	4.7	1.1	0.232^{a}	164	23	187^{a}	HS
Lantian 12	Qingnong-4/	China	10.45^{b}	3.3	0.8	0.198^{ab}	145	11	156^{ab}	MS
	Xiannong-4									
Katea	Hebros/Bez-1	Bulgaria	7.98^{bc}	2.5	0.6	0.178^{b}	140	16	156^{ab}	MR
Ekonomka	-	Ukraine	6.39^{bc}	1.8	0.4	0.183^{b}	96	10	106^{b}	MR
Nudakota	Jagger/	USA	3.52^{c}	1.2	0.3	0.200^{ab}	128	11	139^{b}	R
	Romanian									

Columns with different letters are significantly different based on one way ANOVA (Holm-Sidak) analysis at ($P \leqslant 0.05, \mathrm{n}=18$) and $\mathrm{a}>\mathrm{b}>\mathrm{c}$.
Abbreviations: HS: highly susceptible; R: resistant: MR: moderately resistant; J2: second-stage juveniles; SD: standard deviation; SE: standard error.

Fig. 3. Regression coefficient (R^{2}) for relation between cyst sizes (mm) to total number of eggs and juveniles in five wheat accessions ($P \leqslant 0.05, \mathrm{n}=67$).
inoculated plants. No significant differences were found in plant height, plant weight, root length, root weight and root volume between inoculated and non-inoculated Katea, Ekonomka and Nudakota (Fig. 4).

Discussion

Resistant wheat cultivars can be very effective in controlling cyst nematodes. Research to identify resistance sources and to characterise molecular markers for resistant phenotypes is ongoing in wheat and its wild relatives. However, there are very few studies focusing on the mechanism of resistance in wheat-nematode interactions. Wheat landraces and domesticated genotypes possess genetic variation including resistance to biotic and abiotic stresses (Kimber \& Feldman, 1987). Here, we analysed wheat populations with wide geographical distribution and diverse genetic background to identify a new sources of resistance that can be introduced into wheat breeding. Two hundred and ninety-one wheat accessions
used in this study responded differentially to H. filipjevi infection and damage. Seventeen percent of the wheat accessions led to significant reduction in nematode numbers compared to Bezostaza 1 and were therefore classified as R (1%) and MR (16%) (Table S1). In these wheat accessions, nematode infection and development was suppressed and relatively few females developed to maturity. The frequency of resistant accessions observed in this study varied significantly among the different geographical origin (Table 1). Two winter wheat cvs Silverstar (source of Crel) and Frame (source of Cre8) were reported to confer moderate resistance to H. filipjevi (Imren et al., 2012). The Iranian bread wheat landrace Sardari carrying the Crel gene was reported to confer moderate resistance to H. filipjevi (Akar et al., 2009). However, the Sardari (accession number (ACCNO) 951009, Table S1) was only moderately susceptible in our study. The experimental method used by Akar et al. was different and the inoculum density (20 J 2) was low compared to our study. A screening, performed in a glasshouse, and field

Fig. 4. Effect of Heterodera filipjevi on wheat growth determined as cumulative root length (A), root volume (B) and root weight (C) on different wheat accessions. Columns with different letters are significantly different based on one way ANOVA (Holm-Sidak) analysis at $(P \leqslant 0.05, \mathrm{n}=18)$ and $\mathrm{a}>\mathrm{b}$. Bar indicates the standard error of the mean.
trials revealed one resistant wheat germplasm (6R(6D)) and two moderately resistant wheat germplasm (Mackller and CROC_1/AE.SQUARROSA(224)//OPATA) (Yuan et al., 2011). The two wheat accessions ES 84.24/GRK and Suzen 97 (ACCNO 000374 and 950283, Table S1) tested in this study (Yuan et al., 2011) were found to be highly susceptible, thus confirming our results.

Several mechanisms of resistance to cyst nematodes have been reported in host plants, including prevention of nematode infection and interruption of nematode development (Montes et al., 2004; Reynolds et al., 2011). Our data suggest that in resistant accessions nematode development is impaired at three phases: early invasion, nematode development, and reproduction, i.e., the number of eggs and J2. Nematode invasion was very low in all four lines at the infection stage (2 dpi), gradually but moderately increased at 5 and 10 dpi due to juveniles that needed more time to find and invade the roots. We therefore conclude that in these accessions resistance is at least partially based on reduced invasion. This is consistent with other studies in wheat with H. filipjevi and H. avenae (Sağlam et al., 2009; Seifi et al., 2013). Other authors also found low invasion of H. avenae in resistant wheat cultivars Raj MR 1, CCNRV 4 and AUS 15854 (Pankaj et al., 2008). J2 are attracted to host plants by root exudates. Differences in the composition of root exudates might explain lower
or higher attraction to roots and may alter nematode behaviour (Zhao et al., 2000; Robinson, 2002). J2 use their stylets as tools to pierce cell walls mechanically (Wyss \& Zunke, 1986; Wyss, 2002) and to release secretions containing cell wall modifying enzymes facilitate ingress to roots (De Boer et al., 1996; Davis et al., 2000, 2008; Long et al., 2013). The composition of cell walls, therefore, may also determine invasion success by forming a more or less strong physical or physiological obstacle (reviewed by Bohlmann \& Sobczak, 2014). Syncytia developed by H. avenae in susceptible wheat cv. Meering were metabolically active, while the syncytium of resistant wheat (Triticum aestivum cv. AUS10894) remained extensively vacuolated and less active at 13 dpi (Seah et al., 2000). A similar report revealed H. avenae female development was arrested in resistant wheat near isogenic line AUS10894 \times Prins and metabolically active syncytia in the susceptible cv. Prins was reported (Williams \& Fisher, 1993). At this stage, we cannot state whether the studied wheat accessions differ in chemical composition of root exudates and cell wall. Our results, however, show that the development of J3, J4 female and male does not differ between susceptible and resistant wheat accessions. We therefore conclude that the resistant accessions do not suppress growth and development of invaded nematodes by limitation or failure of the function of
the induced syncytia. This mechanism has often been observed in other host-nematode interactions e.g., in tomato containing Hero A gene conferring resistance to potato cyst nematode Globodera rostochiensis (Sobczak et al., 2005), potato containing Gpa2 gene to G. pallida (Koropacka, 2010) and sugar beet containing $H S l^{\text {prol }}$ gene to H. schachtii (Holtmann et al., 2000). Deterioration of the syncytia in these cases prevents successful completion of the nematode life cycle.

In this study, we examined cyst size as a possible indicator of resistance expecting the size of cysts to be related to the number of eggs and $\mathbf{J} 2$ they contain. In fact, cyst size was reduced in two resistant accessions (Katea and Ekonomka). However, counting the number of eggs and J2 revealed no clear correlation between these two traits (Fig. 3). Whereas in Katea, cyst size was reduced, the number of eggs and J2 was not significantly different compared to cv. Bezostaya 1. By contrast, both traits showed significantly reduced values in Ekonomka. Since there is no clear correlation between cyst size and number of eggs and J 2 , we conclude that cyst size is not a reliable trait to determine nematode resistance. Further studies are needed to verify whether and which plant factors determine these nematode traits.

Among all results achieved by analysing plant growth parameters, only root length and root weight in Lantian 12 and root weight in cv. Bezostaya 1 showed reduction after nematode infection. The fact that in most accessions none of the parameters was changed after inoculation indicates that the plants are tolerant to low nematode infection. The question rises why the susceptible cv. Bezostaya 1 obviously also shows this type of response. Since Bezostaya 1 is a cultivar which is grown extensively in Turkey, it might well be that is has been selected unintentionally by the farmers to maintain or improve wheat production under nematode infestation. Our data, however, do not imply that the studied accessions would show tolerance under field conditions. This trait is much more complex and can finally only be measured through monitoring yield under different conditions. However, here we focused on those parameters that can easily be monitored in a growth room trial. Extensive trials currently in progress will show how the selected accessions perform under field conditions. The challenge will then be to differentiate between effects that can be attributed to resistance from those that are based on tolerance.

From our results, we confirmed that wheat accessions Nudakota, Katea, Ekonomka and Lantian 12 possess resistance and can subsequently be crossed with high-
yielding cultivars improving their genetic resistance to CCNs. Currently, we are working on the identification of markers and QTLs that are related to nematode resistance. Therefore, 161 wheat accessions have been included in a genome-wide association study to identify loci/genes conferring resistance to H. filipjevi (Pariyar et al., 2015). Marker-assisted selection will further improve the development of resistant cultivars. Isolation of candidate genes associated with specific markers will greatly facilitate this process.

Acknowledgements

The authors thank IWWIP for the wheat accessions and Ministry of food Agriculture and Livestock, Republic of Turkey and the Transitional Zone Agriculture Research Institute-Eskisehir for technical support.

References

Abdollahi, M. (2008). Morphology and morphometrics of He terodera filipjevi (Madzhidov, 1981) Steller, 1984 from Kohgiluyeh and Boyer-Ahmad province, Iran. Pakistan Journal of Biological Sciences 11, 1864-1867.
Akar, T., Caliskan, M., Nicol, J., Uranbey, S., Sahin, E., Yazar, S., William, M. \& Braun, H. (2009). Molecular characterization of cereal cyst nematode diagnostic markers Crel and Cre 3 in some winter wheat germplasm and their potential use against Heterodera filipjevi. Field Crops Research 114, 320323.

Bohlmann, H. \& Sobczak, M. (2014). The plant cell wall in the feeding sites of cyst nematodes. Frontiers in Plant Science 5, 89.

Byrd, D.W., Kirkpatrick, T. \& Barker, K. (1983). An improved technique for clearing and staining plant tissues for detection of nematodes. Journal of Nematology 15, 142-143.
Cobb, N.A. (1918). Estimating the nema population of soil, with special reference to the sugar-beet and root-gall nemas, Heterodera schachtii Schmidt and Heterodera radicicola (Greef) Müller and with a description of Tylencholaimus aequalis n. $s p$. Washington, DC, USA, National Government Printing Office.
Dababat, A.A., Erginbas-Orakci, G., Toktay, H., Imren, M., Akin, B., Braun, H.J., Dreisigacker, S., Elekcioglu, İ.H. \& Morgunov, A.I. (2014). Resistance of winter wheat to Heterodera filipjevi in Turkey. Turkish Journal of Agriculture and Forestry 38, 180-186.
Dababat, A.A., Imren, M., Erginbas-Orakci, G., Ashrafi, S., Yavuzaslanoglu, E., Toktay, H., Pariyar, S.R., Elekcioglu, H.I., Morgounov, A. \& Mekete, T. (2015). The importance
and management strategies of cereal cyst nematodes, Heterodera spp., in Turkey. Euphytica 202, 173-188.
Davis, E.L., Hussey, R.S., Baum, T.J., Bakker, J., Schots, A., Rosso, M.N. \& Abad, P. (2000). Nematode parasitism genes. Annual Review of Phytopathology 38, 341-372.
Davis, E.L., Hussey, R.S., Mitchum, M.G. \& Baum, T.J. (2008). Parasitism proteins in nematode-plant interactions. Current Opinion in Plant Biology 11, 360-366.
De Boer, J.M., Smant, G., Goverse, A., Davis, E.L., Overmars, H.A., Pomp, H.R., van Gent-Pelzer, M., Zilverentant, J.F., Stokkermans, J., Hussey, R.S. et al. (1996). Secretory granule proteins from the subventral esophageal glands of the potato cyst nematode identified by monoclonal antibodies to a protein fraction from second-stage juveniles. Molecular PlantMicrobe Interactions 9, 39-46.
Hajihasani, A., Tanha Maafi, Z. \& Hajihasani, M. (2010). The life cycle of Heterodera filipjevi in winter wheat under microplot conditions in Iran. Nematologia Mediterranea 38, 53-57.
Harrington, J.T., Mexal, J.G. \& Fisher, J.T. (1994). Volume displacement provides a quick and accurate way to quantify new root production. Tree Planters' Notes 45, 121-124.
Hewezi, T. \& Baum, T.J. (2013). Manipulation of plant cells by cyst and root-knot nematode effectors. Molecular PlantMicrobe Interactions 26, 9-16.
Holgado, R., Andersson, S., Rowe, J. \& Magnusson, C. (2004). First record of Heterodera filipjevi in Norway. Nematologia Mediterranea 32, 205-211.
Holgado, R., Andersson, S. \& Magnusson, C. (2005). Management of cereal cyst nematodes, Heterodera spp., in Norway. Communications in Agricultural and Applied Biological Sciences 71, 639-645.
Holtmann, B., Kleine, M. \& Grundler, F.M.W. (2000). Ultrastructure and anatomy of nematode-induced syncytia in roots of susceptible and resistant sugar beet. Protoplasma 211, 3950.

Imren, M., Toktay, H., Bozbuga, R., Erginbas-Orakci, G., Dababat, A.A. \& Elekcioglu, I.H. (2012). Identification of genetic resistance to cereal cyst nematodes, Heterodera avenae (Wollenweber), H. filipjevi (Madzhidov) Stelter and H. latipons (Franklin), in some international bread wheat germplasms. Turkish Journal of Entomology 37, 277-282.
Kimber, G. \& Feldman, M. (1987). Wild wheat: an introduction. Special Report 353, College of Agriculture, University of Missouri-Columbia. Columbia, MO, USA, University of Missouri-Columbia, pp. 142-146.
Koropacka, K.B. (2010). Molecular contest between potato and the potato cyst nematode Globodera pallida: modulation of Gpa2-mediated resistance. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands.
Li, H., Cui, L., Li, H., Wang, X., Murray, T.D., Conner, R.L., Wang, L., Gao, X., Sun, Y., Sun, S. et al. (2012). Effective resources in wheat and wheat-Thinopyrum derivatives for
resistance to Heterodera filipjevi in China. Crop Science 52, 1209-1217.
Long, H., Peng, D., Huang, W., Peng, H. \& Wang, G. (2013). Molecular characterization and functional analysis of two new β-1,4-endoglucanase genes (Ha-eng-2, Ha-eng-3) from the cereal cyst nematode Heterodera avenae. Plant Pathology 62, 953-960.
McIntosh, R. (1997). Breeding wheat for resistance to biotic stresses. In: Braun, H.J., Altay, F., Kronstad, W.E., Beniwal, S.P.S. \& McNab, A. (Eds). Wheat: prospects for global improvement, Vol. 6. Dordrecht, The Netherlands, Springer, pp. 71-86.
Montes, J.M., López-Braña, I. \& Delibes, A. (2004). Root enzyme activities associated with resistance to Heterodera avenae conferred by gene Cre7 in a wheat/Aegilops triuncialis introgression line. Journal of Plant Physiology 161, 493-495.
Nicol, J.M. \& Rivoal, R. (2008). Global knowledge and its application for the integrated control and management of nematodes on wheat. In: Ciancio, A. \& Mukerji, K.G. (Eds). Integrated management and biocontrol of vegetable and grain crops nematodes. Dordrecht, The Netherlands, Springer, pp. 251-294.
Nicol, J.M., Bolat, N., Sahin, E., Tulek, A., Yildirim, A., Yorgancilar, A., Kaplan, A. \& Braun, H.J. (2006). The cereal cyst nematode is causing economic damage on rainfed wheat production systems of Turkey. Phytopathology 96(Suppl.), S169.
Nicol, J.M., Turner, S.J., Coyne, D.L., Den Nijs, L., Hockland, S. \& Tahna Maafi, Z. (2011). Current nematode threats to world agriculture. In: Jones, J., Gheysen, G. \& Fenoll, C. (Eds). Genomics and molecular genetics of plant-nematode interactions. Dordrecht, The Netherlands, Springer, pp. 2123.

Pankaj, Singh, C., Rohatgi, D., Tomar, S.M.S., Sirohi, A., Gaur, H.S., Kishor, V., Bishnoi, S.P., Kumar, R. \& Yadav, S.M. (2008). Genetics of resistance in wheat against the cereal cyst nematode, Heterodera avenae Woll. Nematologia Mediterranea 36, 19-23.
Pariyar, S.R., Dababat, A.A., Erginbaş-Orakçi, G., Siddique, S., Elashry, A., Sannemann, W., Morgounov, A., Leon, J. \& Grundler, F.M.W. (2015). Analysis of wheat resistance to cereal cyst nematode Heterodera filipjevi through association mapping. In: Dababat, A.A., Muminjanov, H. \& Smiley, R.W. (Eds). Nematodes of small grain cereals: current status, and research. Proceedings of the fifth International Cereal Cyst Nematode Initiative workshop, Ankara, Turkey. Rome, Italy, FAO, pp. 205-219.
Reynolds, A.M., Dutta, T.K., Curtis, R.H., Powers, S.J., Gaur, H.S. \& Kerry, B.R. (2011). Chemotaxis can take plantparasitic nematodes to the source of a chemo-attractant via the shortest possible routes. Journal of the Royal Society Interface 8, 568-577.
Riley, I.T., Nicol, J.M. \& Dababat, A.A. (Eds) (2009). Cereal cyst nematodes: status, research and outlook. Proceedings of
the first workshop of the International Cereal Cyst Nematode Initiative, 21-23 October 2009, Antalya, Turkey. Ankara, Turkey, CIMMYT.
Rivoal, R. \& Cook, R. (1993). Nematode pests of cereals. In: Evans, K., Trudgill, D.L. \& Webster, J.M. (Eds). Plant parasitic nematodes in temperate agriculture. Wallingford, UK, CAB International, pp. 259-303.
Robinson, A.F. (2002). Nematode behaviour and migrations through soil and host tissue. In: Chen, C., Chen, S. \& Dickson, D.W. (Eds). Nematology: advances and perspectives, Vol. 1. Wallingford, UK, CAB International and Beijing, China, Tsinghua University Press, pp. 331-401.
Rumpenhorst, H.J., Elekçioğlu, İ.H., Sturhan, D. \& Öztürk, G. (1996). The cereal cyst nematode Heterodera filipjevi (Madzhidov) in Turkey. Nematologia Mediterranea 24, 135138.

Sağlam, H., Çobanoğlu, S., Wesemael, W., Nıcol, J., Viaene, N. \& Dababat, A.A. (2009). Preliminary investigation of resistance in winter wheat to Heterodera filipjevi under controlled conditions. In: Riley, I.T., Nicol, J.M. \& Dababat, A.A. (Eds). Cereal cyst nematodes: status, research and outlook. Proceedings of the first workshop of the International Cereal Cyst Nematode Initiative, 21-23 October 2009, Antalya, Turkey. Ankara, Turkey, CIMMYT, pp. 172-176.
Seah, S., Miller, C., Sivasithamparam, K. \& Lagudah, E.S. (2000). Root responses to cereal cyst nematode (Heterodera avenae) in hosts with different resistance genes. New Phytologist 146, 527-533.
Seifi, S., Karegar, A. \& Banihashemi, Z. (2013). The life cycle of the cereal cyst nematode, Heterodera filipjevi, and effect of plant hosts on its population. World Applied Programming 3, 164-168.
Smiley, R., Yan, G. \& Handoo, Z. (2008). First record of the cyst nematode Heterodera filipjevi on wheat in Oregon. Plant Disease 92, 1136.
Sobczak, M. \& Golinowski, W. (2011). Cyst nematodes and syncytia. In: Jones, J., Gheysen, G. \& Fenoll, C. (Eds). Genomics and molecular genetics of plant nematode interactions. Dordrecht, The Netherlands, Springer, pp. 83-102.
Sobczak, M., Avrova, A., Jupowicz, J., Phillips, M.S., Ernst, K. \& Kumar, A. (2005). Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera
spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Molecular Plant-Microbe Interactions 18, 158-168.
Toktay, H., Imren, M., Bozbuga, R., Erginbas-Orakçı, G., Dababat, A.A. \& Elekcioğlu, H.I. (2013). Pathotype characterization of the cereal cyst nematode Heterodera filipjevi (Madzhidov, 1981) Stelter in Turkey. Turkish Journal of Entomology 37, 213-219.
Trudgill, D.L. (1967). The effect of environment on sex determination in Heterodera rostochiensis. Nematologica 13, 263272.

Trudgill, D.L. (1991). Resistance to and tolerance of plant parasitic nematodes in plants. Annual Review of Phytopathology 29, 167-192.
Williams, K.J. \& Fisher, J.M. (1993). Development of Heterodera avenae Woll. and host cellular responses in susceptible and resistant wheat. Fundamental and Applied Nematology 16, 417-423.
Williamson, V.M. \& Kumar, A. (2006). Nematode resistance in plants, the battle underground. Trends in Genetics 22, 396403.

Wyss, U. (2002). Feeding behavior of plant-parasitic nematodes. In: Lee, D.L. (Ed.). The biology of nematodes. London, UK, Taylor \& Francis, pp. 233-260.
Wyss, U. \& Grundler, F.M.W. (1992). Heterodera schachtii and Arabidopsis thaliana, a model host-parasite interaction. Nematologica 38, 488-493.
Wyss, U. \& Zunke, U. (1986). Observations on the behaviour of second stage juveniles of Heterodera schachtii inside host roots. Revue de Nématologie 9, 153-165.
Yan, G. \& Smiley, R.W. (2010). Distinguishing Heterodera filipjevi and H. avenae using polymerase chain reactionrestriction fragment length polymorphism and cyst morphology. Phytopathology 100(3), 216-224.
Yuan, H.X., Zhang, F.X., Zhang, J.J., Hou, X.S., Li, H.J. \& Li, H.L. (2011). Resistance of CIMMYT wheat germplasm to Heterodera filipjevi Xuchang population from Henan Province, China. Acta Agronomica Sinica 37, 1956-1966.
Zhao, X., Schmitt, M. \& Hawes, M.C. (2000). Speciesdependent effects of border cell and root tip exudates on nematode behavior. Phytopathology 90, 1239-1245.

Table S1. (Continued.)

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	$\begin{aligned} & \text { Female/ } \\ & 5 \mathrm{rep} \end{aligned}$	SD	SE	Host status
25	11CBWF	100676	LCR/SERI/3/MEX-DW/ BACA//VONA/4/TAM200/ JI5418	-0AP-DH16	ICWH99018	SYR	21.0	5.11534	2.55767	HS
26	11CBWF	980135	VICTORYA			UKR	22.3	7.02772	3.51386	HS
27	11CBWF	060050	ATTILA/3/AGRI/NAC//MLT	-0E-0E-2E-0E-1E-0E	TCI981026	TCI	17.3	2.24846	1.12423	S
28	11CBWF	060074	TX69A509.2//BBY/FOX/3/ GRK//NO64/PEX/4/ CER/5/CHIL/2*STAR	-0E-0E-5E-0E-2E-0E	TCI981148	TCI	17.7	1.64992	0.82496	S
29	11CBWF	000261	VORONA/KAUZ//1D13.1/MLT	$\begin{aligned} & -0 \mathrm{SE}-0 \mathrm{YC}-*-3 \mathrm{YE}-3 \mathrm{YC}- \\ & 0 \mathrm{YC} \end{aligned}$	CIT937111	TCI	19.3	5.57275	2.78638	S
30	11CBWF	090068	RSK/CA8055//CHAM6/4/ NWT/3/TAST/SPRW// TAW12399.75	$\begin{aligned} & \text {-0AP-0AP-25AP-0AP- } \\ & \text { 4AP-0AP } \end{aligned}$	TCI-02-47	TCI	17.3	2.01384	1.00692	S
31	11CBWF	090270	TAM200/KAUZ//YUMAI30	$\begin{aligned} & \text {-030YE-30E-5E-0E- } \\ & \text { 4AP-0AP } \end{aligned}$	TCI011017	TCI	18.3	1.0274	0.5137	S
32	11CBWF	090350	HBA142A/HBZ621A// ABILENE/3/CAMPION/ 4/F6038W12.1	-030YE-30E-3E-0E-1E0E	TCI012144	TCI	12.0	1.87083	0.93541	MS
33	11CBWF	090432	4WON-IR-257/5/YMH/ HYS//HYS/TUR3055/3/DGA/ 4/VPM/MOS	$\begin{aligned} & \text {-0AP-0AP-46AP-0AP- } \\ & \text { 1AP-0AP } \end{aligned}$	TCI-02-80	TCI	11.3	1.92931	0.96465	MS
34	11CBWF	090495	PYN/BAU/3/KAUZ//KAUZ/ STAR	-030YE-30E-6E-0E-1E0E	C3W01WM00586S	MX-TCI	21.5	4.44175	2.22088	HS
35	11CBWF		VEE\#8//JUP/BJY/3/F3.71/ TRM/4/BCN/5/KAUZ/6/163	-030YE-0E-1E-0E-2E0E	TCI992192	TCI	25.7	2.01384	1.00692	HS
36	11CBWF		DORADE-5/3/BOW"S"/GEN// SHAHI	$\begin{aligned} & \text {-0AP-0AP-6AP-0AP- } \\ & \text { 3AP-0AP } \end{aligned}$	TCI-02-522	TCI	20.0	9.09212	4.54606	HS
37	11CBWF	010004	494J6.11//TRAP\#1/BOW	-0YC-0YC-0YC-8YC- 0YC-1SE-0YC-2YC- $0 Y C$	C3W90M200	MX-CIT	24.0	2.25462	1.12731	HS
38	11CBWF	020321	SAULESKU\#44/TR810200	-03Y-0B-0SE-3YE- 0YC-2YM-0YM	C3W94WM00586S	MX-TCI	20.2	3.00925	1.50462	HS
39	11CBWF	950513	GUN91	-1A-1A-1A-0A	SWM7155	MX-YA	14.2	0.62361	0.3118	MS
40	11CBWF	070158	CHEN/AE.SQUARROSA (TAUS)//BCN/4/RAN/ NE701136//CI13449/CTK/ 3/CUPE/5/130L1.11/ GUN91//KINAC197	-030YE-0E-1E-0E-1E0E	TCI992198	TCI	14.5	5.30723	2.65361	MS
41	11CBWF	950377	DOGU88			TR-ERZ	19.0	1.77951	0.88976	S

Table S1. (Continued.)

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	$\begin{aligned} & \text { Female/ } \\ & 5 \mathrm{rep} \end{aligned}$	SD	SE	Host status
42	11CBWF	070676	KS92H363-2/COUGAR SIB(=NE85707/TBIRD) X NE94632(=ABILENE/ NORKAN//RAWHIDE)			US-UNL	20.2	5.10446	2.55223	HS
43	11CBWF	090779	SAR-30			IR-DARI	18.3	3.32499	1.66249	S
44	11CBWF	090781	RASAD			IR-DARI	17.5	1.47196	0.73598	S
45	11CBWF	050117	KS82142/PASTOR	-0P-0YC-0YE-3YE- 0YE-1YE-0YE	C3W97WM00399S	OR-CIT	13.5	7.11805	3.55903	MS
46	11CBWF	990857	BURBOT-6	-9H-0YC-1YC-0YC-0YC-2YC-0YC-3YC0YC	WXD880137A	OR-CIT	17.0	1.87083	0.93541	S
47	11CBWF	000374	ES84.24/GRK	$\begin{aligned} & \text {-0SE-0YC-1YE-0YC- } \\ & 2 \mathrm{YC}-0 \mathrm{YC} \end{aligned}$	CIT932135	TCI	24.7	0.84984	0.42492	HS
48	11CBWF	950283	SUZEN 97	-7E-1E-0E	YE2957	TR-ESK	21.0	1.87083	0.93541	HS
49	11CBWF	050696	TAM105/3/NE70654/BBY// BOW"S"/4/Century*3/TA2450		AP01T1112	US-AgriPro South	17.8	3.68179	1.84089	S
50	11CBWF	050751	MILLENNIUM/NE93613		SD00258	US-SDSU	5.8	3.92287	1.96143	MR
51	11CBWF	010027	TAM200/KAUZ	$\begin{aligned} & \text {-0SE-0YC-1YC-0YC- } \\ & \text { 3YC-0YC-1YC-0YC } \end{aligned}$	C3W91M00414S	MX-CIT	18.8	7.26101	3.6305	S
52	11CBWF	040237	PYN/BAU/3/AGRI/BJY//VEE	$\begin{aligned} & \text {-0SE-0YC-17E-0E-1K } \\ & \text {-0YK } \end{aligned}$	TCI961547	TCI	19.0	3.24037	1.62019	S
53	11CBWF	950369	DAGDAS94	-10A-0A	YA15662	YA-BD	16.2	2.35702	1.17851	S
54	11CBWF	050728	TREGO/BTY SIB		KS01HW152-6	Kansas State-Hays	16.3	3.47211	1.73606	S
55	11CBWF	070676	NE04424	HRW		US-UNL	22.8	4.17	2.085	HS
56	11CBWF	090783	KOHDASHT			IR-DARI	15.5	1.77951	0.88976	S
57	11CBWF	070603	ICDW-21122	BW		AFG	6.8	1.43372	0.71686	MR
58	11CBWF	951009	SARDARI			IR-DARI	14.7	1.31233	0.65617	MS
59	11CBWF	030243	SABALAN/GRK//PYN/BAU	$\begin{aligned} & \text {-0YC-0E-1YE-0YE- } \\ & 3 \mathrm{YM}-0 \mathrm{YM} \end{aligned}$	TCI952089	TCI	23.3	3.42377	1.71189	HS
60	11CBWF	030323	CA8055/4/ROMTAST/BON/3/ DIBO//SU92/CI13645/5/ AGRI/BJY//VEES	$\begin{aligned} & \text {-0SE-0YC-0E-7YE- } \\ & \text { 0YE-1YM-0YM } \end{aligned}$	TCI951084	TCI	20.3	1.88562	0.94281	HS
61	11CBWF	000330	BILINMIYEN96.7	-0SE-3YA-3YC-0YC	F2.96.7	TCI	20.2	5.94886	2.97443	HS
62	11CBWF	000029	RIPPER			US-COL	16.0	1.08012	0.54006	S
63	11CBWF	000031	SNOWMASS			US-COL	16.5	2.85774	1.42887	S
64	11CBWF	070671	$\begin{aligned} & 2180^{*} \text { K/2163//?/3/ } \\ & \text { W1062A*HVA114/W3416 } \end{aligned}$	KS980554-12-~9		USA	11.5	2.82843	1.41421	MS
65	11CBWF	040320	BULEVREDIKA/STOZHER/4/ TAST/SPRW//CA8055/3/CSM	$\begin{aligned} & \text {-0AP-0YC-2E-0E-2K- } \\ & 0 \mathrm{YK} \end{aligned}$	TCI96T151	TCI	13.2	9.56847	4.78423	MS

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	$\begin{aligned} & \text { Female/ } \\ & 5 \mathrm{rep} \end{aligned}$	SD	SE	Host status
66	11CBWF	090169	TAM200/KAUZ/3/SPN/NAC// ATTILA/4/F885K1.1/SXL	-030YE-30E-3E-0E-1E0 E	TCI012021	TCI	18.5	2.48328	1.24164	S
67	11CBWF	090194	ZCL/3/PGFN//CNO67/ SON64(ES86-8)/4/ KA../4/BEZ/NAD//KZM (ES85.24)/3/F900K	-030YE-30E-6E-0E-2E0E	TCI011392	TCI	16.2	6.32895	3.16447	S
68	11CBWF	080893	CDC FALCON			CAN	16.7	7.71722	3.85861	S
69	11CBWF	080991	Bulava			RUS	15.3	2.49444	1.24722	MS
70	11CBWF	090748	MIRONIVSKA RANNOSTYGLA			UKR-MIR	20.7	6.84755	3.42377	HS
71	11CBWF	100701	PEREGRINE			CAN	16.0	3.08221	1.5411	S
72	11CBWF	090079	GRECUM 84//PYN/BAU	$\begin{aligned} & \text {-0AP-0AP-18AP-0AP- } \\ & \text { 1E-0E } \end{aligned}$	TCI-02-726	TCI	14.5	2.44949	1.22474	MS
73	11ELITE-IRR	980825	AGRI/NAC//ATTILA	C3W92WM00232S	$\begin{aligned} & \text {-0SE-0YC- } 4 \mathrm{YE}- \\ & 0 \mathrm{YC} \end{aligned}$	MX-TCI	14.7	4.24918	2.12459	MS
74	11ELITE-IRR	980960	TAM200/JI5418	CIT930099	$\begin{aligned} & \text {-OSE-0YC-2YE- } \\ & 0 \mathrm{YC} \end{aligned}$	TCI	18.8	8.02427	4.01213	S
75	11ELITE-IRR	950055	BESKOPRU			TR	22.3	0.62361	0.3118	HS
76	11ELITE-IRR	990149	885K4.1//MNG/SDV1/3/ 1D13.1/MLT	CIT925099	$\begin{aligned} & \text {-0SE-0YC-3YC- } \\ & 0 \mathrm{YC}-3 \mathrm{YC}-0 \mathrm{YC} \end{aligned}$	TCI	17.8	3.51979	1.75989	S
77	11ELITE-IRR	990932	STAR/BWD	C3W93WM0137	$\begin{aligned} & \text {-0AP-0YC-11YE- } \\ & 0 \mathrm{YC} \end{aligned}$	MX-TCI	13.3	2.09497	1.04748	MS
78	11ELITE-IRR	990414	FRTL//AGRI/NAC	C3W93WM0071	$\begin{aligned} & -0 \mathrm{AP}-0 \mathrm{YC}-29 \mathrm{YE}- \\ & 0 \mathrm{YC} \end{aligned}$	MX-TCI	14.8	4.00694	2.00347	MS
79	11ELITE-IRR	232	SW89-3218//AGRI/NAC	C3W93WM0184	$\begin{aligned} & \text {-0AP-0YC-*-3YE- } \\ & \text { 3YC-0YC } \end{aligned}$	MX-TCI	14.0	2.27303	1.13652	MS
80	11ELITE-IRR	10831	ID800994.W/MO88	CMWS92Y00272S	-030WM-1WM-05WM-015WM-7WM-0WM	MX-TCI	20.7	4.10961	2.0548	HS
81	11ELITE-IRR	991101	VORONA/HD2402	SWM17702	-0SE-9YC-0YC-1YC-0YC-4YC$0 \mathrm{YC}-34 \mathrm{YC}-0 \mathrm{YC}$	MX-CIT	16.2	4.49691	2.24846	S
82	11ELITE-IRR	33	AGRI/NAC//KAUZ	C3W92WM00231S	$\begin{aligned} & \text {-0SE-0YC-0YC-*- } \\ & 5 \mathrm{YE}-5 \mathrm{YC}-0 \mathrm{YC} \end{aligned}$	MX-TCI	15.3	2.95334	1.47667	MS
83	11ELITE-IRR	10246	ESKINA-8	CIT925080	-0SE-0YC-7YC- 0YC-2YC-0YC- 3YC-0YC	CIT	13.3	3.85861	1.92931	MS
84	11ELITE-IRR	30158	AGRI/BJY//VEE/3/KS82142/ CUPE	TCI951027	$\begin{aligned} & \text {-0SE-0YC-0E-1YE- } \\ & 0 \mathrm{YE} \end{aligned}$		20.5	4.02078	2.01039	HS

Table S1. (Continued.)

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	$\begin{aligned} & \text { Female/ } \\ & 5 \text { rep } \end{aligned}$	SD	SE	Host status
85	11ELITE-IRR	40007	F130-L-1-12/ MV12(ATILLA-12)	TCI961246	-0SE-0YC-0E-1YE-0YE-2YM-0YM	TCI	17.7	4.49691	2.24846	S
86	11ELITE-IRR	50073	AGRI/BJY//VEE/3/AKULA/4/ F10S-1	TCI972515	-0SE-0YC-0YE-4YE-0YE-1YE0YE	TCI	13.5	1.22474	0.61237	MS
87	11ELITE-IRR	50111	SHI\#4414/CROW"S"// GK SAGVARI/CA8055	TCI97AP 539	$\begin{aligned} & \text {-0SE-0YC-0YE- } \\ & 26 \mathrm{YE}-0 \mathrm{YE}-1 \mathrm{YE}- \\ & 0 \mathrm{YE} \end{aligned}$	TCI	16.7	5.79272	2.89636	S
88	11ELITE-IRR	60119	VORONA/HD2402// ALBATROSS ODESSKIY	TCI960735	-0AP-0AP-0YE-5YE-0YE-1YE0YE	TCI	17.0	4.60072	2.30036	S
89	11ELITE-IRR	60074	TX69A509.2//BBY/FOX/ 3/GRK//NO64/PEX/4/ CER/5/CHIL/2*STAR	TCI981148	-0E-0E-5E-0E-2E0E	TCI	11.5	1.87083	0.93541	MS
90	11ELITE-SA	950412	KARAHAN			TR	20.0	2.85774	1.42887	HS
91	11ELITE-SA		MUFFITBEY			TR	17.0	2.27303	1.13652	
92	11ELITE-SA	980671	LFN/VOGAF//LIRA/5/ K134(60)/4/TOB/BMAN// BB/3/CAL/6/F339P1.2	CIT935039	$\begin{aligned} & \text {-0SE-0YC-5YE- } \\ & 0 \mathrm{YC} \end{aligned}$	TCI	7.8	3.85861	1.92931	MR
93	11ELITE-SA	980639	FLAMURA85//F134.71/NAC	CIT930037	$\begin{aligned} & -0 \mathrm{SE}-0 \mathrm{YC}-1 \mathrm{YE}- \\ & 0 \mathrm{YC} \end{aligned}$	TCI	16.2	1.31233	0.65617	S
94	11ELITE-SA	990276	ORKINOS-1		$\begin{aligned} & \text {-0YA-0YA-5YC- } \\ & 0 \mathrm{YC} \end{aligned}$	YA-TCI	21.3	2.4608	1.2304	HS
95	11ELITE-SA	990277	ORKINOS-2		$\begin{aligned} & \text {-0YA-0YA-6YC- } \\ & \text { 0YC } \end{aligned}$	YA-TCI	7.2	1.69967	0.84984	MR
96	11ELITE-SA	990818	PMF/MAYA//YACO/3/ CO693591/CTK	CIT90095T	-0YC-0YC-0YC-3YC-0YC-1YC0 YC	CIT	22.8	3.39935	1.69967	HS
97	11ELITE-SA	990125	777TWWON87/3/F12.71/ SKA//CA8055	CIT922247	-0SE-0YC-3YC$0 \mathrm{YC}-3 \mathrm{YC}-0 \mathrm{YC}$	CIT	10.8	0.62361	0.3118	MS
98	11ELITE-SA	990084	1D13.1/MLT//TUI	C3W90M398	-0YC-0YC-0YC-1YC-0YC-6YC0 YC	MX-CIT	12.8	0.94281	0.4714	MS
99	11ELITE-SA	990593	KVZ/HB2009/5/CNN/ KHARKOV//KC66/3/ SKP35/4/VEE	ICWH87046	$\begin{aligned} & -0 \mathrm{YC}-0 \mathrm{R}-2 \mathrm{YC}- \\ & 0 \mathrm{YC}-1 \mathrm{YA}-0 \mathrm{YC} \end{aligned}$	CIT	10.8	5.03874	2.51937	MS
100	11ELITE-SA	010027	TAM200/KAUZ	C3W91M00414S	-0SE-0YC-1YC-0YC-3YC-0YC-1YC-0YC	MX-CIT	14.0	2.04124	1.02062	MS

Table S1. (Continued.)

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	Female/ 5 rep	SD	SE	Host status
101	11ELITE-SA	010037	JI5418/MARAS	CIT922142	-0SE-0YC-3YC 0YC-6YC-0YC-1YC-0YC	CIT	20.8	3.29983	1.64992	HS
102	11ELITE-SA	020323	SAULESKU\#44/TR810200	C3W94WM00586S	-03Y-0B-0SE-3YE- $0 \mathrm{YC}-4 \mathrm{YM}-0 \mathrm{YM}$	MX-TCI	24.2	3.42377	1.71189	HS
103	11ELITE-SA	020319	SAULESKU\#44/TR810200	C3W94WM00586S	$\begin{aligned} & \text {-03Y-0B-0SE-1YE- } \\ & 0 \mathrm{YC}-1 \mathrm{YM}-0 \mathrm{YM} \end{aligned}$	MX-TCI	17.8	5.4365	2.71825	S
104	11ELITE-SA	020226	BILINMIYEN96.27	F2.96.27	-0SE-0YC-1YE-0YC-2YM-0YM	TCI	19.2	1.84089	0.92045	S
105	11ELITE-SA	020293	TAST/SPRW/4/ROM-TAST/ BON/3/DIBO//SU92/ CI13645/5/F130L1.12	CIT932182	$\begin{aligned} & -0 \mathrm{SE}-0 \mathrm{YC}-7 \mathrm{YE}- \\ & 0 \mathrm{YC}-1 \mathrm{YM}-0 \mathrm{YM} \end{aligned}$	CIT	18.7	2.77889	1.38944	S
106	11ELITE-SA	030311	GUN91/POBEDA//F900K	CIT945243	$\begin{aligned} & -030 \text { SE-0YC-2YE- } \\ & 0 \mathrm{YC}-2 \mathrm{YM}-0 \mathrm{YM} \end{aligned}$	TCI	20.7	1.24722	0.62361	HS
107	11ELITE-SA	030418	CA8055//KS82W409/ STEPHENS	TCI950547	$\begin{aligned} & \text {-0SE-0YC-0E-4YE- } \\ & 0 \mathrm{YE}-1 \mathrm{YM}-0 \mathrm{YM} \end{aligned}$	TCI	13.8	1.43372	0.71686	MS
108	11ELITE-SA	030423	YE2453//PPBB68/CHRC	TCI950019	$\begin{aligned} & \text {-3AP-0AP-0E-2YE- } \\ & 0 \mathrm{YE}-3 \mathrm{YM}-0 \mathrm{YM} \end{aligned}$	TCI	15.3	2.3214	1.1607	MS
109	11ELITE-SA	060161	TX69A509.2//BBY/FOX/3/ GRK//NO64/PEX/4/CER/5/ KAUZ//ALTAR 84/AOS	TCI981143	$\begin{aligned} & -0 \mathrm{E}-0 \mathrm{E}-6 \mathrm{E}-0 \mathrm{E}-1 \mathrm{E}- \\ & 0 \mathrm{E} \end{aligned}$	TCI	12.5	0.70711	0.35355	MS
110	11ELITE-SA	060287	BOW/NKT//KATIA1/3/AGRI/ BJY//VEE	TCI982234	-030YE-0E-3E-0E- $1 \mathrm{E}-0 \mathrm{E}$	TCI	19.5	7.17635	3.58818	HS
111	11ELITE-SA	060417	TIRCHMIR1//71ST2959/ CROW/4/NWT/3/TAST/ SPRW//TAW12399.75	TCI98-IC-0097	-0AP-0AP-4E-0E-2E-0E	TCI	21.8	2.09497	1.04748	HS
112	11ELITE-SA	991540	YILDIZ			TR	13.2	1.64992	0.82496	MS
113	18FAWWONIRR	080009	DORADE-5/CAMPION	TCI001049	$\begin{aligned} & \text {-030YE-030YE-2E- } \\ & 0 \mathrm{E}-4 \mathrm{E}-0 \mathrm{E} \end{aligned}$	TCI	10.2	0.4714	0.2357	MS
114	18FAWWONIRR	080056	T 98-9//VORONA/HD2402	TCI001530	-030YE-030YE- $11 \mathrm{E}-0 \mathrm{E}-3 \mathrm{E}-0 \mathrm{E}$	TCI	23.5	6.01387	3.00694	HS
115	18FAWWONIRR	080533	SHARK-1/GK.PINKA	TCI001359	-030YE-030YE- 10E-0E-3AP-0AP	TCI	18.5	0.70711	0.35355	S
116	18FAWWONIRR	080684	BOW/CROW/3RSH//KAL/BB/ 3/GUN91	TCI011508	-030YE-30E-0YK	TCI	16.8	1.69967	0.84984	S
117	18FAWWONIRR	070256	HK 1/6/NVSR3/5/BEZ/TVR/ 5/CFN/BEZ//SU92/ CI13645/3NAI60	ICWH99158	$\begin{aligned} & \text {-0AP-0AP-0AP- } \\ & \text { 4YE-0YE } \end{aligned}$	TCI	15.5	2.16025	1.08012	S

Table S1. (Continued.)

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	$\begin{gathered} \text { Female/ } \\ 5 \text { rep } \\ \hline \end{gathered}$	SD SE	Host status
118	18FAWWONIRR		TAST/SPRW//LT176.73/7/ SOTY/SUT//LER/4/2*RFN/ 3/FR//KAD/GB/5/TMP64../ 8/BOUHOUTH6	TCI97AP 212		TCI	15.8	4.870552 .43527	S
119	18FAWWONIRR		SN64//SKE/2*ANE/3/SX/4/ BEZ/5/SERI/6/CHERVONA/ 7/KLEIBER/2*FL80// DONSK.POLUK.	TCI962126		TCI	16.7	1.433720 .71686	S
120	18FAWWONIRR	070250	HK 1/4/TAST/SPRW//CA8055/ 3/CSN	ICWH99157	$\begin{aligned} & -0 \mathrm{AP}-1 \mathrm{AP}-2 \mathrm{AP}- \\ & 0 \mathrm{AP}-2 \mathrm{AP}-0 \mathrm{AP} \end{aligned}$	TCI	13.5	0.707110 .35355	MS
121	18FAWWONIRR	080031	TX71A1039.V1*3/ AMI/3/BEZ/NAD// KZM(ES85-24)/4/SHARK-1	TCI001213	$\begin{aligned} & -030 \mathrm{YE}-030 \mathrm{YE}-7 \mathrm{E}- \\ & 0 \mathrm{E}-3 \mathrm{E}-0 \mathrm{E} \end{aligned}$		13.7	4.921612 .4608	MS
122	18FAWWONIRR	080052	GANSU-1//VORONA/HD2402	TCI001499	$\begin{aligned} & \text {-030YE-030YE-5E- } \\ & 0 \mathrm{E}-2 \mathrm{E}-0 \mathrm{E} \end{aligned}$		14.3	7.728023 .86401	MS
123	18FAWWONIRR	080595	T 98-9//VORONA/HD2402	TCI001530	-030YE-030YE- 22E-0E-4AP-0AP	TCI	13.5	3.341661 .67083	MS
124	18FAWWONIRR	080702	CRR/ATTILA/4/WA476/391/3/ NUM//W22/TA M200	TCI-01-419	$\begin{aligned} & \text {-0AP-0AP-25AP- } \\ & 0 \mathrm{AP}-4 \mathrm{AP}-0 \mathrm{AP} \end{aligned}$	TCI	11.5	6.337723 .16886	MS
125	18FAWWONIRR	080660	DANA/3/SPN/NAC//ATTILA/ 4/SHARK-1	TCI002097	$\begin{aligned} & -030 \mathrm{YE}-030 \mathrm{YE}-1 \mathrm{E}- \\ & 0 \mathrm{E}-1 \mathrm{E}-0 \mathrm{E} \end{aligned}$	TCI	17.5	2.677061 .33853	S
126	18FAWWONIRR	100671	LCR/SERI/3/MEX-DW/ BACA//VONA/4/ TAM200/JI5418	ICWH99018	-0AP-DH16	TCI	13.0	5.887842 .94392	MS
127	18FAWWONIRR	100673	HK92/L 3676 K 11-20	ICWH99019	-0AP-DH14	TCI	14.3	0.849840 .42492	MS
128	18FAWWONIRR	100664	SHAHRIAR			IR-ARD	5.3	2.592721 .29636	MR
129	18FAWWONIRR	090861	Alamoot/4/Bloudan/3/Bb/ 7c*2//Y50E/Kal*3			IR-KARAJ	14.0	2.549511 .27475	MS
130	18FAWWONIRR	081138	Owl//Ombul/Alamo			IR-KARAJ	12.8	4.784232 .39212	MS
131	18FAWWONIRR	081161	Alvd//Aldan/Ias58/3/ Col.No.3193/4/Zarrin			IR-KARAJ	16.8	7.706423 .85321	S
132	18FAWWONIRR	090902	Bow"s"/Crow"s"// Kie"s"/Vee"s"/3/MV17			IR-MIANDOAB	14.8	3.324991 .66249	MS
133	18FAWWONIRR	090914	Owl/Soissons//Zarrin			IR-MIANDOAB	11.7	1.02740 .5137	MS
134	18FAWWONIRR	090920	Spb"s"//K134(60)/Vee"s"/ 3/Druchamps/4/Alvan d			IR-MIANDOAB	6.3	1.247220 .62361	MR

Table S1. (Continued.)

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	$\begin{gathered} \text { Female/ } \\ 5 \mathrm{rep} \end{gathered}$	SD	SE	Host status
135	18FAWWONIRR	090911	PODOIMA			MOL	13.5	5.01664	2.50832	MS
136	18FAWWONIRR	090915	AVANTAJ			MOL	16.8	4.78423	2.39212	S
137	18FAWWONIRR	080189	TX71A1039.V1*3/ AMI//TRAP\#1/4/KAUZ// ALTAR 84/AOS/3/KAUZ	C3W00WM440	-030YE-030YE-6E-0E-5E-0E	MX	13.2	3.32499	1.66249	MS
138	18FAWWONIRR	080840	SIRKKU/PRINIA	C3S97Y00247S	$\begin{aligned} & -040 \mathrm{Y}-050 \mathrm{M}-020 \mathrm{Y}- \\ & 030 \mathrm{M}-41 \mathrm{Y}-1 \mathrm{M}-0 \mathrm{Y} \end{aligned}$	MX	15.3	2.35702	1.17851	MS
139	18FAWWONIRR	080829	KAUZ CHIL/PRL//BAV92/3/MILAN/ KAUZ	C3S97M03230T	$\begin{aligned} & \text {-040Y-020Y-030M- } \\ & \text { 040SY-020M-24Y- } \\ & \text { 0M-0SY } \end{aligned}$	MX	13.3	1.69967	0.84984	MS
140	18FAWWONIRR	100710	NUDELA			RO	18.8	3.39935	1.69967	S
141	18FAWWONIRR	100704	CH-111.14098			UN	14.5	2.16025	1.08012	MS
142	18FAWWONIRR	070632	MIT/TX93V5722//W95-301	TX04M410164		USA	11.3	6.54896	3.27448	MS
143	18FAWWONIRR	100006	TX98D1170*2/TTCC365	WX02ARS 171-3-14	ARS05-0043	US-ARS-NC	9.7	3.06413	1.53206	MR
144	18FAWWONIRR	100031	IN97395B1-4-3-8/ AWD99*5725		ARS07-0723	US-ARS-NC	9.5	1.08012	0.54006	MR
145	18FAWWONIRR	080486	ORACLE/PEHLIVAN	TCI00125703	$\begin{aligned} & \text {-030YE-030YE-2E- } \\ & \text { 0E-4AP-0AP } \end{aligned}$	TCI	14.0	3.34166	1.67083	MS
146	18FAWWONSA	080710	BUC/PVN//MILAN/3/ TX96V2427	TCI-01-436	$\begin{aligned} & \text {-0AP-0AP-28AP- } \\ & 0 \mathrm{AP}-3 \mathrm{AP}-0 \mathrm{AP} \end{aligned}$	TCI	7.0	0.8165	0.40825	MR
147	18FAWWONSA	080217	$\begin{aligned} & \text { SST44//K4500.2/ } \\ & \text { SAPSUCKER/3/ALTAY } \end{aligned}$	TCI001581	$\begin{aligned} & \text {-030YE-030YE-2E- } \\ & \text { 0E-5E-0E } \end{aligned}$	TCI	17.5	0.8165	0.40825	S
148	18FAWWONSA	080229	KAROUS-4/7/NECOMP1/ 5/BEZ//TOB/8156/4/ON/3/ TH ${ }^{*} /$ KF//LEE* $6 / \mathrm{K} / 6 /$ TAST/SPRW..	TCI001744	$\begin{aligned} & \text {-030YE-030YE-2E- } \\ & \text { 0E-3E-0E } \end{aligned}$	TCI	7.0	2.85774	1.42887	MR
149	18FAWWONSA	080271	TAM200/KAUZ//Ltg-164	TCI-01-135	$\begin{aligned} & \text {-0AP-0AP-18AP- } \\ & \text { 0AP-3AP-0AP } \end{aligned}$	TCI	11.2	2.86744	1.43372	MS
150	18FAWWONSA	080335	VORONA/HD2402/3/RSK/ CA8055//CHAM6	TCI-01-61	$\begin{aligned} & \text {-0AP-0AP-14AP- } \\ & \text { 0AP-4AP-0AP } \end{aligned}$	TCI	15.8	3.47211	1.73606	S
151	18FAWWONSA	080364	DOGU88//TX71A374.4/ TX71A1039.V1/3/1502W9.1/ 4/MIRLEBEN	TCI991247	$\begin{aligned} & \text {-0YE-0YK-0YO- } \\ & 0 \mathrm{YK} \end{aligned}$	TCI	16.2	3.29983	1.64992	S
152	18FAWWONSA	080221	HBA142A/HBZ621A// ABILENE/3/BURBOT-6	TCI001619	$\begin{aligned} & \text {-030YE-030YE-1E- } \\ & 0 \mathrm{E}-4 \mathrm{E}-0 \mathrm{E} \end{aligned}$		12.2	0.4714	0.2357	MS

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	$\begin{gathered} \hline \text { Female/ } \\ 5 \text { rep } \\ \hline \end{gathered}$	SD	SE	Host status
153	18FAWWONSA	080157	8030VERSAILLES/EDCH// CD/3/[SAULESKU 17]	C3W00WM540	$\begin{aligned} & \text {-030YE-030YE-3E- } \\ & \text { 0E-2E-0E } \end{aligned}$	MX-TCI	11.5	9.35414	4.67707	MS
154	18FAWWONSA	080402	$\begin{aligned} & \text { CM98-79/3/T67/ } \\ & \text { X84W063-9-45//K92 } \end{aligned}$	X990439	$\begin{aligned} & -0 \mathrm{E}-030 \mathrm{YE}-2 \mathrm{E}-0 \mathrm{E}- \\ & 3 \mathrm{E}-0 \mathrm{E} \end{aligned}$	KSU-TCI	11.5	4.24264	2.12132	MS
155	18FAWWONSA	080403	CM98-112/4/ HAWK/81PYI9641// MESA MOTHER LINE/3/KS82W418/SPN	X990457	-0E-030YE-1E-0E- $1 \mathrm{E}-0 \mathrm{E}$	KSU-TCI	6.7	0.62361	0.3118	MR
156	18FAWWONSA	070653	HBK0935-29-15/ KS90W077-2-2/VBF0589-1	AP06T3832		USA	8.5	2.85774	1.42887	MR
157	18FAWWON- SA	070671	$\begin{aligned} & 2180^{*} \mathrm{~K} / 2163 / / ? / 3 / \\ & \text { W } 1062 A^{*} \mathrm{HVA} 114 / \mathrm{W} 3416 \end{aligned}$	KS980554-12-~9		USA	7.7	1.84089	0.92045	MR
158	18FAWWONSA	080218	ARLIN/ALTAY	TCI001606	-030YE-030YE-1E-0E-3E-0E	TCI	14.7	4.08928	2.04464	MS
159	18FAWWONSA	080298	YE2453/KA//1D13.1/MLT/3/ VORONA/TR810200	TCI-01-422	$\begin{aligned} & \text {-0AP-0AP-27AP- } \\ & 0 \mathrm{AP}-1 \mathrm{AP}-0 \mathrm{AP} \end{aligned}$	TCI	9.3	3.29983	1.64992	MR
160	18FAWWON- SA	080313	DORADE-5/4/HK96/3/ CHAM6//1D13.1/MLT	TCI-01-505	$\begin{aligned} & \text {-0AP-0AP-13AP- } \\ & 0 \mathrm{AP}-1 \mathrm{AP}-0 \mathrm{AP} \end{aligned}$	TCI	10.3	4.24918	2.12459	MS
161	18FAWWON- SA	080400	CM98-64/4/HAWK/ 81PYI9641//MESA MOTHER LINE/3/KS82W418/SPN	X990434	$\begin{aligned} & -0 \mathrm{E}-030 \mathrm{YE}-2 \mathrm{E}-0 \mathrm{E}- \\ & 2 \mathrm{E}-0 \mathrm{E} \end{aligned}$	KSU-TCI	8.3	4.6428	2.3214	MR
162	18FAWWONSA	080833	RL6043/4*NAC// PASTOR/3/BABAX	C3S97M03173T	$\begin{aligned} & \text {-040Y-030M- } \\ & \text { 040SY-030M- } \\ & \text { 040SY-11M-0Y- } \\ & \text { 0SY } \end{aligned}$	MX	16.5	1.77951	0.88976	S
163	18FAWWONSA	080398	JUP/4/CLLF/3/II14.53/ODIN// CI13431/WA00477/5/ GK Aron/AgSeco 7846//2180	OCW00S436S	-0YA-2E-0E-2E-0E	OK-TCI	13.7	1.64992	0.82496	MS
164	18FAWWONSA	070668	HBK1064-3/KS84063-9-39-3- 4W//X960103	KS970093-8-9-\#1		USA	6.0	0.40825	0.20412	MR
165	18FAWWON- SA	090713	JAGGER/ALLIANCE	NE02558		USA	7.3	3.68179	1.84089	MR
166	C19FAWWONINT		LANTIAN 12			PRC	6.0	1.5456	0.7728	MR
167	C19FAWWONINT		LANTIAN 14			PRC	10.5	3.89444	1.94722	MS
168	C19FAWWONINT		LANTIAN 15			PRC	14.3	0.84984	0.42492	MS

Table S1. (Continued.)

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	$\begin{gathered} \text { Female/ } \\ 5 \text { rep } \\ \hline \end{gathered}$	SD	SE	Host status
169	C19FAWWON-		LANTIAN 17			PRC	13.0	2.67706	1.33853	MS
170	C19FAWWON- INT		LANTIAN 00-30			PRC	24.0	4.08928	2.04464	HS
171	C19FAWWONINT		BOGDANA			UKR-MIR	15.3	0.94281	0.4714	MS
172	C19FAWWON- INT		VESTA			UKR-MIR	12.7	3.47211	1.73606	MS
173	C19FAWWONINT		VOLODARKA			UKR-MIR	21.5	5.71548	2.85774	HS
174	C19FAWWONINT		ECONOMKA			UKR-MIR	5.2	3.92287	1.96143	MR
175	C19FAWWONINT		KRYZHYNKA			UKR-MIR	10.7	6.73713	3.36856	MS
176	C19FAWWONINT		KOLOS MYRONIVSCHYNY			UKR-MIR	14.0	6.37704	3.18852	MS
177	C19FAWWONINT		KALINOVA			UKR-MIR	13.8	4.32692	2.16346	MS
178	C19FAWWONINT		SNIZHANA			UKR-MIR	10.0	3.89444	1.94722	MR
179	C19FAWWONINT		KATIA			BUL	8.3	2.01384	1.00692	MR
180	C19FAWWONINT		Gariep			SA	15.0	3.18852	1.59426	MS
181	C19FAWWONINT		Komati			SA	16.0	4.81318	2.40659	S
182	C19FAWWONINT		Limpopo			SA	10.7	4.02768	2.01384	MS
183	C19FAWWONINT		T06/11			SA	13.5	1.22474	0.61237	MS
184	C19FAWWONINT		T07/09			SA	16.3	5.8642	2.9321	S
185	C19FAWWONINT		T08/03			SA	10.8	4.92161	2.4608	MS
186	C19FAWWONINT		SONMEZ			TR	7.3	2.77889	1.38944	MR
187	C19FAWWONINT		T03/17			SA	8.2	2.49444	1.24722	MR
188	C19FAWWONINT		KS98HW518(93HW91/ 93HW255)//KS98H245(IKE/ TA2460//*3T200)/TREGO	KS05HW136-3	KSU-HAYS	SA	11.7	7.19182	3.59591	MS

Table S1. (Continued.)

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	Female/ 5 rep	SD	SE	Host status
189	C19FAWWONINT		T03/01			SA	13.5	6.68331	3.34166	MS
190	C19FAWWONINT		T04/25			SA	16.3	4.08928	2.04464	S
191	C19FAWWONINT		T04/17			SA	4.3	2.09497	1.04748	R
192	C19FAWWONINT		EC-P			SA	8.0	0.70711	0.35355	MR
193	C19FAWWONINT		Kariega			SA	8.8	3.68179	1.84089	MR
194	C19FAWWONINT		Olifants			SA	5.5	4.63681	2.3184	MR
195	C19FAWWONINT		KONYA			TCI	11.0	4.63681	2.3184	MS
196	C19FAWWONINT		BSP01/19 (Krokodil)			SA	13.0	8.19553	4.09776	MS
197	C19FAWWONINT		BSP01/18 (Duzi)			SA	9.5	2.94392	1.47196	MR
198	C19FAWWONINT		BSP06/06			SA	10.3	6.53622	3.26811	MS
199	C19FAWWONINT		BSP06/08			SA	8.8	2.24846	1.12423	MR
200	C19FAWWONINT		BSP06/17			SA	7.2	2.0548	1.0274	MR
201	C19FAWWONINT		BSP07/11			SA	18.8	2.86744	1.43372	S
202	C19FAWWONINT		BSP08/02			SA	15.5	0.40825	0.20412	S
203	C19FAWWONINT		BSP08/06			SA	12.2	2.65623	1.32811	MS
204	C19FAWWONINT		BSP08/10			SA	13.2	2.49444	1.24722	MS
205	C19FAWWONINT		BSP08/11			SA	13.0	2.44949	1.22474	MS
206	C19FAWWONINT		BSP08/12			SA	13.8	1.92931	0.96465	MS
207	C19FAWWONINT		BSP08/13			SA	17.7	1.92931	0.96465	S
208	C19FAWWONINT		BSP08/17			SA	11.7	4.36527	2.18263	MS

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	$\begin{aligned} & \text { Female/ } \\ & 5 \text { rep } \end{aligned}$	SD	SE	Host status
209	C19FAWWONINT		BC01138-S			US-AGRIPRO	13.8	5.03874	2.51937	MS
210	C19FAWWONINT		NUDAKOTA			US-AGRIPRO	4.0	1.92931	0.96465	R
211	C19FAWWONINT		ART			US-AGRIPRO	9.8	1.31233	0.65617	MR
212	C19FAWWON- INT		JAGARENE			US-AGRIPRO	9.0	2.27303	1.13652	MR
213	C19FAWWONINT		HAWKEN			US-AGRIPRO	10.3	1.31233	0.65617	MS
214	C19FAWWON- INT		SARATOVSKAYA90			RUS-SAR	18.3	6.11465	3.05732	S
215	C19FAWWONINT		SARATOVSKAYA OSTISTAYA			RUS-SAR	22.0	5.01664	2.50832	HS
216	C19FAWWON- INT		SARATOVSKAYA17			RUS-SAR	15.3	4.58863	2.29432	MS
217	C19FAWWON- INT		ZHEMCHUZHINA POVOLZHJYA			RUS-SAR	12.7	2.4608	1.2304	MS
218	C19FAWWONINT		M808/BRIGANTINA	23		RUS-SAR	15.3	3.27448	1.63724	MS
219	C19FAWWONINT		SARATOVSKAYA90/ UKRAINA	30		RUS-SAR	10.2	3.96513	1.98256	MS
220	C19FAWWONINT		LUTESCENS329/ UROZHAINAYA	33		RUS-SAR	21.2	2.01384	1.00692	HS
221	C19FAWWONINT		GUBERNIYA/ SARATOVSKAYA17	15		RUS-SAR	11.8	0.94281	0.4714	MS
222	C19FAWWONINT		GUBERNIYA/ SARATOVSKAYA18	16		RUS-SAR	13.8	9.10433	4.55217	MS
223	C19FAWWONINT		BEZENCHUKSKAYA616			RUS-SAM	17.8	4.02768	2.01384	S
224	C19FAWWONINT		BIRYUZA			RUS-SAM	17.3	2.39212	1.19606	S
225	C19FAWWONINT		MALAHIT			RUS-SAM	11.5	1.87083	0.93541	MS
226	C19FAWWONINT		BEZENCHUKSKAYA380			RUS-SAM	10.0	1.41421	0.70711	MR
227	C19FAWWONINT		TANYA			RUS-KRAS	10.2	6.78642	3.39321	MS
228	C19FAWWONINT		KUMA			RUS-KRAS	13.0	4.24264	2.12132	MS

Entry	Nursery	ACCNO CName	SELHX	CID	Origin	$\begin{gathered} \text { Female/ } \\ 5 \mathrm{rep} \end{gathered}$	SD	SE	Host status
229	C19FAWWONINT	PAMYAT			RUS-KRAS	7.7	1.64992	0.82496	MR
230	C19FAWWONINT	MOSKVICH			RUS-KRAS	9.2	5.66176	2.83088	MR
231	C19FAWWONINT	KRASNODAR99			RUS-KRAS	11.2	4.98888	2.49444	MS
232	C19FAWWONINT	STARSHINA			RUS-KRAS	12.8	7.36357	3.68179	MS
233	C19FAWWONINT	MASCOT			UK	6.3	0.2357	0.11785	MR
234	C19FAWWONINT	LINE 39			UKR	16.3	8.33	4.165	S
235	C19FAWWONINT	Prost/Unk95-3	TE5644	-1T-1T-1T-1T-0T	TE-TR	9.3	3.56682	1.78341	MR
236	C19FAWWONINT	Vorona/Parus//Hatusha/3/ Lut1 12/4/Pehl//Rpb8-68//Chrc	TE6035	-1T-1T-4T-0T	TE-TR	16.5	1.63299	0.8165	S
237	C19FAWWONINT	Srz95/Gyaurs 1//Sana	TE5720	-3T-1T-2T-1T-1T-0T	TE-TR	13.2	7.35225	3.67612	MS
238	C19FAWWONINT	Bez//Bez/Tvr/3/Krmn/Lov29/ 4/Kate/5/Mom	TE5446	-5T-1T-3T-1T-0T	TE-TR	9.7	4.47834	2.23917	MR
239	C19FAWWONINT	Mex65/Momt/4/Cor71-11460/3/ Pkg/Lov13//Jsw3/5/Bul5052-1	TE5542	-1T-3T-1T-2T-0T	TE-TR	15.2	3.85861	1.92931	MS
240	C19FAWWONINT	8272-1-1/4/ Temu39.76/Chat// Cupe/3/M1223.3D.1D/Ald	TE5694	-4T-3T-1T-1T-0T	TE-TR	15.2	2.0548	1.0274	MS
241	C19FAWWONINT	AHMETAGA			TR	10.7	1.0274	0.5137	MS
242	C19FAWWONINT	Zarrin/Shiroodi/6/Zarrin/5/ Omid/4/Bb/Kal//Ald/ 3/Y50E/Kal*3//Emu"s"			Karadj	12.7	2.3214	1.1607	MS
243	C19FAWWONINT	$\begin{aligned} & 1-68-120 / 1-68-22 / / \mathrm{Mirtos} / \\ & 3 / 1-68-120 / 1-68-22 \end{aligned}$			Karadj	15.0	0.70711	0.35355	MS
244	C19FAWWONINT	Alamoot/Sids8			Mashhad	10.0	1.87083	0.93541	MR
245	C19FAWWONINT	Zarrin*2/Shiroodi/3/Zarrin// Vee/Nac			Miandoab	8.7	4.02768	2.01384	MR
246	C19FAWWONINT	Owl/Shiroodi/3/Owl//Opata*2/ Wulp			Miandoab	8.5	2.67706	1.33853	MR
247	C19FAWWONINT	$\begin{aligned} & 1-68-120 / 1-68-22 / 4 / \mathrm{Kal} / \mathrm{Bb} / / \\ & \mathrm{Cj} \text { " } \mathrm{s} " / 3 / \text { Hork"s" } \end{aligned}$			Ardebil	11.0	0.8165	0.40825	MS

Table S1. (Continued.)

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	$\begin{gathered} \hline \text { Female/ } \\ 5 \text { rep } \\ \hline \end{gathered}$	SD	SE	Host status
248	C19FAWWONINT		OVERLEY*3/AMADINA	KS06O3A~57-1		KSU-Man	18.2	2.09497	1.04748	S
249	C19FAWWONINT		2145/X940786-6-7	TX05A001822		Texas A\&M	10.5	1.63299	0.8165	MS
250	C19FAWWON- INT		NE93407/TX86V1115/4/T107// TX78V3620/Ctk78/3/ TX87V1233	TX05A001398		Texas A\&M	15.5	3.89444	1.94722	S
251	C19FAWWONINT		NE96644(=ODESSKAYA P./ CODY)//PAVON/ *3SCOUT66/3/WAHOO SIB	NI04420		UNL	17.3	3.00925	1.50462	S
252	C19FAWWONINT		Wesley/NE93613	SD05118-1		SDSU	12.2	3.09121	1.5456	MS
253	C19FAWWONINT		BEZOSTAYA			RUS	14.0	2.85774	1.42887	MS
254	C19FAWWONTCI	090008	F12.71/SKA//FKG15/3/F483/4/ CTK/VEE/5/SH ARK/F4105W2.1	-030YE-30E-2E-0E-1E0E	TCI011134	TCI	17.2	3.79327	1.89663	S
255	C19FAWWON- TCI	090015	55.1744/MEX67.1//NO57/3/ KAUZ/4/SHARK/F4105W2.1/ 5/TX96V2427	$\begin{aligned} & \text {-030YE-30E-3E-0E- } \\ & \text { 2AP-0AP } \end{aligned}$	TCI012335	TCI	7.5	1.47196	0.73598	MR
256	C19FAWWONTCI	090019	ZANDER-6/5/YE2453/4/ KS831024/3/AUR/LANC// NE7060	$\begin{aligned} & \text {-0AP-0AP-16AP-0AP- } \\ & \text { 1E-0E } \end{aligned}$	TCI-02-257	TCI	12.2	2.35702	1.17851	MS
257	C19FAWWONTCI	090057	GRECUM 84//PYN/BAU	-0AP-0AP-18AP-0AP- $1 \mathrm{E}-0 \mathrm{E}$	TCI-02-726	TCI	12.5	2.54951	1.27475	MS
258	C19FAWWONTCI	090049	SWON98-124/3/AGRI/NAC// ATTILA	-0AP-0AP-0AP-2E-0E-3E-0E-1E-0E	ICWH99353	TCI	17.8	0.62361	0.3118	S
259	C19FAWWONTCI	090051	VORONA/HD2402/4/TAST/ SPRW//BLL/3/NWT	$\begin{aligned} & -030 \mathrm{YE}-30 \mathrm{E}-8 \mathrm{E}-0 \mathrm{E}-1 \mathrm{E}- \\ & 0 \mathrm{E} \end{aligned}$	TCI011030	TCI	13.5	3.34166	1.67083	MS
260	C19FAWWONTCI		PYN/PARUS/3/VPM/MOS83-11-4-8//PEW/4/Bluegil	-030YE-30E-2E-0E-1E0E	TCI011322	TCI	17.2	1.17851	0.58926	S
261	C19FAWWONTCI	90295	JI5418/MARAS//SHARK/ F4105W2.1	-030YE-30E-7E-0E-1E0 E	TCI011194	TCI	16.5	6.16441	3.08221	S
262	C19FAWWONTCI	90350	HBA142A/HBZ621A// ABILENE/3/CAMPION/ 4/F6038W12.1	-030YE-30E-3E-0E-1E0E	TCI012144	TCI	9.7	3.51979	1.75989	MR
263	C19FAWWONTCI	90353	BLUEGIL-2/BUCUR//SIRENA	-030YE-30E-3E-0E-1E0E	TCI012159	TCI	15.5	0.40825	0.20412	S
264	C19FAWWONTCI	90493	PYN/BAU/3/KAUZ//KAUZ/ STAR	-030YE-30E-4E-0E-1E0E	C3W01WM00586S	MX-TCI	12.8	1.64992	0.82496	MS

Table S1. (Continued.)

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	Female/ 5 rep	SD	SE	Host status
265	C19FAWWONTCI	90532	BR1284//BH114686/ ALD/3/CAZO/4/KS940786-6-7	-30E-1E-0E-2E-0E	X011602	KS-TCI	13.7	3.42377	1.71189	MS
266	C19FAWWONTCI	90572	LOV26/LFN/SDY(ES84-24)/ 3/SERI/4/FDL49../5/LAGOS-6	-030YE-30E-1E-0E-1E0E	TCI011046	TCI	19.3	4.40328	2.20164	S
267	C19FAWWONTCI	90590	ADMIS//MILAN/DUCULA	-030YE-30E-1E-0E-1E0E	C3W01WM00331S	MX-TCI	19.2	3.32499	1.66249	S
268	C19FAWWONTCI	90614	AGRI/BJY//VEE/3/BUCUR/4/ DOGU88//TX71A374.4/ TX71A1039.V1/3/1502W9.1	-030YE-30E-1E-0E-2E0E	TCI012082	TCI	20.0	3.62859	1.8143	HS
269	C19FAWWONTCI	50852	VO1225			TCI	11.8	1.31233	0.65617	MS
270	C19FAWWONTCI	108	FRTL/NEMURA	$\begin{aligned} & -0 \mathrm{AP}-0 \mathrm{YC}-*-1 \mathrm{YE}-1 \mathrm{YC}- \\ & 0 \mathrm{YC} \end{aligned}$	C3W93WM0073	MX-TCI	11.8	1.0274	0.5137	MS
271	C19FAWWONTCI	60585	338-K1-1//ANB/BUC/3/GS50A	$\begin{aligned} & \text {-0SE-0YC-0YE-4YE- } \\ & 0 \mathrm{YE}-4 \mathrm{YE}-0 \mathrm{YE} \end{aligned}$	TCI971351	TCI	16.7	2.95334	1.47667	S
272	C19FAWWONTCI	90216	BEZ/NAD//KZM(ES85.24)/ 3/MILAN/4/SPN/NAC// ATTILA	-030YE-30E-1E-0E-1E0E	TCI011486	TCI	11.3	5.2015	2.60075	MS
273	C19FAWWONTCI	90240	RAN/NE701136//CI13449/ CTK/3/CUPE/4/TAM200/ KAUZ/5/BWD	-030YE-30E-3E-0E-1E0E	TCI012234	TCI	21.2	7.48703	3.74351	HS
274	C19FAWWONTCI	90181	CTY*3/TA2460//LAGOS-6	-030YE-30E-1E-0E-2E0E	TCI011059	TCI	9.3	4.47834	2.23917	MR
275	C19FAWWONTCI		TOSUNBEY			TR	12.8	1.84089	0.92045	MS
276	11CBWF	950590	KATIA1			BUL	10.5	2.12132	1.06066	MS
277	11CBWF	050670	STARSHINA			RUS	14.0	4.49073	2.24537	MS
278	11CBWF	000033	AGRI/NAC//KAUZ	$\begin{aligned} & \text {-0SE-0YC-0YC-*-5YE- } \\ & 5 \mathrm{YC}-0 \mathrm{YC} \end{aligned}$	C3W92WM00231S	MX-TCI	15.3	1.5456	0.7728	MS
279	11CBWF	060075	TX69A509.2//BBY/FOX/3/ GRK//NO64/PEX/4/CER/5/ CHIL/2*STAR	-0E-0E-5E-0E-3E-0E	TCI981148	TCI	13.7	5.83571	2.91786	MS

Table S1. (Continued.)

Entry	Nursery	ACCNO	CName	SELHX	CID	Origin	$\begin{gathered} \text { Female/ } \\ 5 \text { rep } \\ \hline \end{gathered}$	SD	SE	Host status
280	11CBWF	060074	TX69A509.2//BBY/FOX/3/ GRK//NO64/PEX/4/ CER/5/CHIL/2*STAR	-0E-0E-5E-0E-2E-0E	TCI981148	TCI	8.7	5.31246	2.65623	MR
281	11CBWF	090552	ES14/SITTA//AGRI/NAC/3/ BURBOT-4	$\begin{aligned} & -030 \text { YE-30E-2E-0E- } \\ & \text { 4AP-0AP } \end{aligned}$	TCI011118	TCI	15.2	1.69967	0.84984	MS
282	11CBWF	991760	Caledon			TCI	11.2	3.96513	1.98256	MS
283	C19FAWWONINT		Alamoot/Sids8			Mashhad	12.7	3.00925	1.50462	MS
284	C19FAWWONINT		TOSUNBEY			TR	7.7	3.29983	1.64992	MR
285	C19FAWWONINT		KARAHAN			TR	11.7	3.47211	1.73606	MS
286	C19FAWWONINT		Alamoot/Shiroodi			Mashhad	15.5	4.54606	2.27303	S
287	C19FAWWONINT		Alamoot/Sids8			Mashhad	11.8	1.24722	0.62361	MS
288	C19FAWWONTCI	090028	RSK/CA8055//CHAM6/4/NWT/ 3/TAST/SPRW//TAW12399.75	$\begin{aligned} & \text {-0AP-0AP-25AP-0AP- } \\ & \text { 4AP-0AP } \end{aligned}$	TCI-02-47	TCI	15.5	3.18852	1.59426	S
289	C19FAWWONTCI		EXCALIBUR/WBLL1	-0P0Y-040M-040SY- 030M-8ZLM-0ZTY	C3A00Y00600S	MX	22.3	7.26101	3.6305	HS
290	C19FAWWONINT		Bezostaya 1	LUT17/SRS2		RUS	23.2	2.4608	1.2304	HS
291	C19FAWWONINT		Katea	Hebros/Bez-1		BUL	5.3	1.24722	0.62361	MR

Abbreviations: ACCNO: accession number; CBWF: cross block winter facultative; CName: common name; CID: cross identification; ELITE: semi-arid; FAWWON: facultative and winter wheat observation nursery; HS: highly susceptible; IRR: irrigated; INT: international; MR: moderately resistant; MS: moderately susceptible; SELHX: selection history; SD: standard deviation; SE: standard error; R: resistant; S: susceptible; SA: South Africa; TCI: Turkey-CIMMYT-ICARDA.

Fig. S1. Polymerase chain reaction restriction fragment length polymorphism patterns of Heterodera filipjevi (Hf) and H. schachtii (Hs) based on restriction with HinfI or RsaI.

[^0]: * Corresponding author, e-mail: grundler@uni-bonn.de

